学术交流

    学术交流

    当前位置: 首页 - 学术交流 - 正文

    数学物理及偏微分方程国际系列论坛 (11) :Minimizing the first eigenvalue of Dirac-Coulomb operators: results and conjectures

    信息来源: 发布日期:2024-11-11

    Title: Minimizing the first eigenvalue of Dirac-Coulomb operators: results and conjectures

    Speaker: Professor Eric Sere, Université Paris-Dauphine

    Beijing time: 16: 00--17: 00 pm, Nov. 12th  (Tuesday), 2024

    Paris time: 9: 00--10: 00 am, Nov. 12th  (Tuesday), 2024

    Zoom Meeting ID: 626 871 3564, Passcode: 2024


    Abstract: This talk is based on joint works with J. Dolbeault, M.J. Esteban and M. Lewin. Consider an electron moving in the attractive Coulomb potential generated by a positive finite measure representing an external charge density. If the total charge is fixed, it is well known that the lowest eigenvalue of the corresponding Schrodinger operator is minimized when the measure is a delta. We investigate the conjecture that the same holds for the relativistic Dirac-Coulomb operator. First we state an abstract result on symmetric operators with gaps. Applied to Dirac-Coulomb operators, this result gives conditions ensuring the existence of a natural self-adjoint realisation and that its eigenvalues are given by min-max formulas Then we define a critical charge such that, if the total charge is fixed below it, then there exists a measure minimising the first eigenvalue of the Dirac-Coulomb operator. We find that this optimal measure concentrates on a compact set of Lebesgue measure zero. The last property is proved using a new unique continuation principle for Dirac operators.


    报告人简介:Eric Sere现为法国巴黎九大数学教授,主要从事数学物理、偏微分方程、变分理论等领域的理论研究,特别是在量子多体系统分析领域做出过具有国际影响力的系列研究成果,在Bullet. AMSCPAMDuke Math. J.JEMS等国际顶尖数学期刊上发表论文60余篇,曾担任国际数学杂志AIH. Poincare-Analyse Non Lineaire主编。


    联系地址:

    地址:  湖北省武汉市洪山区珞喻路152号

    邮编:430079

    版权所有:Copyright © 2005-2020 华中师范大学 鄂ICP备05003325号-9