学术交流

    学术交流

    当前位置: 首页 - 学术交流 - 正文

    数苑经纬讲坛(24):Chebotarev's theorem  for groups of order $pq$  and an uncertainty principle

    信息来源:

    报告时间: 202599日(周二)上午 11:00-12:00

    报告地点:国交2号楼315会议室

    报告人:Prof. Maria  Loukaki 克里特大学(Crete University

    摘要:Let $p$ be a prime number and $\zeta_p$ a primitive $p$-th root of unity. Chebotarev's theorem states that every square submatrix of the $p \times p$ matrix $(\zeta_p^{ij})_{i,j=0}^{p-1}$ is non-singular.  In this talk we will show that a similar property holds for principal  submatrices of $(\zeta_n^{ij})_{i,j=0}^{n-1}$, when  $n=pr$ is the product of two distinct primes, and $p$ is a large enough prime that has order $r-1$ in $\mathbf{Z}_r^*$. As an application,  an uncertainty principle for cyclic groups of order $n$ is established when $n=pr$ as described above.

    联系地址:

    地址:  湖北省武汉市洪山区珞喻路152号

    邮编:430079

    版权所有:Copyright © 2005-2020 华中师范大学 鄂ICP备05003325号-9