学术交流

    学术交流

    当前位置: 首页 - 学术交流 - 正文

    数苑经纬讲坛(36):Steady compressible Navier-Stokes-Fourier system with slip boundary conditions arising from kinetic theory

    信息来源:

    报告人:段仁军教授,香港中文大学

    报告时间:2025年10月28日(周二上午)10:00-11:00

    报告地点:国交2号楼315会议室

    报告摘要:This talk concerns the boundary value problem on the steady compressible Navier-Stokes-Fourier system in a channel domain $(0,1)\times\mathbb{T}^2$ with a class of generalized slip boundary conditions that were systematically derived from the Boltzmann equation by Coron [JSP, 1989] and later by Aoki et al. [JSP, 2017].  We establish the existence and uniqueness of strong solutions in $(L_{0}^{2}\cap H^{2}(\Omega))\times V^{3}(\Omega)\times H^{3}(\Omega)$ provided that the wall temperature is near a positive constant.  The proof relies on the construction of a new variational formulation for the corresponding linearized problem and employs a fixed point argument. The main difficulty arises from the interplay of velocity and temperature derivatives together with the effect of density dependence on the boundary.

    联系地址:

    地址:  湖北省武汉市洪山区珞喻路152号

    邮编:430079

    版权所有:Copyright © 2005-2020 华中师范大学 鄂ICP备05003325号-9